19,318 research outputs found

    Wildfire and MAMS data from STORMFEST

    Get PDF
    Early in 1992, NASA participated in an inter-agency field program called STORMFEST. The STORM-Fronts Experiment Systems Test (STORMFEST) was designed to test various systems critical to the success of STORM 1 in a very focused experiment. The field effort focused on winter storms in order to investigate the structure and evolution of fronts and associated mesoscale phenomena in the central United States. This document describes the data collected from two instruments onboard a NASA ER2 aircraft which was deployed out of Ellington Field in Houston, Texas from February 13 through March 15, 1992, in support of this experiment. The two instruments were the Wildfire (a.k.a. the moderate resolution imaging spectrometer-nadir (MODIS-N) Airborne Simulation (MAS)) and the Multispectral Atmospheric Mapping Sensor (MAMS)

    Inclusive neutrino scattering off deuteron from threshold to GeV energies

    Full text link
    Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents. Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies. Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents, from threshold up to GeV energies, using the Argonne v18v_{18} potential and consistent nuclear electroweak currents with one- and two-body terms. Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies 500\gtrsim 500 MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible. Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include pion production channels.Comment: 30 pages, 17 figures; publishe

    Large N_c, Constituent Quarks, and N, Delta Charge Radii

    Full text link
    We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N_c limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N_c baryon observables; here we apply it to the case of charge radii of the N and Delta states, using minimal dynamical assumptions. For example, one finds the relation r_p^2 - r_{Delta^+}^2 = r_n^2 - r_{Delta^0}^2 to be broken only by three-body, O(1/N_c^2) effects for any N_c.Comment: 15 pages, 1 eps figure. Version to appear in Phys. Rev.

    Proton structure corrections to hyperfine splitting in muonic hydrogen

    Full text link
    We present the derivation of the formulas for the proton structure-dependent terms in the hyperfine splitting of muonic hydrogen. We use compatible conventions throughout the calculations to derive a consistent set of formulas that reconcile differences between our results and some specific terms in earlier work. Convention conversion corrections are explicitly presented, which reduce the calculated hyperfine splitting by about 46 ppm. We also note that using only modern fits to the proton elastic form factors gives a smaller than historical spread of Zemach radii and leads to a reduced uncertainty in the hyperfine splitting. Additionally, hyperfine splittings have an impact on the muonic hydrogen Lamb shift/proton radius measurement, however the correction we advocate has a small effect there.Comment: 6 pages, 3 figure

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure

    Spin Response and Neutrino Emissivity of Dense Neutron Matter

    Full text link
    We study the spin response of cold dense neutron matter in the limit of zero momentum transfer, and show that the frequency dependence of the long-wavelength spin response is well constrained by sum-rules and the asymptotic behavior of the two-particle response at high frequency. The sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique and the high frequency two-particle response is calculated for several nucleon-nucleon potentials. At nuclear saturation density, the sum-rules suggest that the strength of the spin response peaks at ω\omega \simeq 40--60 MeV, decays rapidly for ω\omega \geq 100 MeV, and has a sizable strength below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense neutron-rich matter at temperatures of relevance to core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio

    Quantum Monte Carlo Calculations of A6A\leq6 Nuclei

    Full text link
    The energies of 3H^{3}H, 3He^{3}He, and 4He^{4}He ground states, the 32{\frac{3}{2}}^{-} and 12{\frac{1}{2}}^{-} scattering states of 5He^{5}He, the ground states of 6He^{6}He, 6Li^{6}Li, and 6Be^{6}Be and the 3+3^{+} and 0+0^{+} excited states of 6Li^{6}Li have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the A=3A=3 isospin T=12T=\frac{1}{2} and A=6A=6 isospin T=1T=1, Jπ=0+J^{\pi} = 0^{+} multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.Comment: 12 pages, 1 figur

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    Effective Widths and Effective Number of Phonons of Multiphonon Giant Resonances

    Get PDF
    We discuss the origin of the difference between the harmonic value of the width of the multiphonon giant resonances and the smaller observed value. Analytical expressions are derived for both the effective width and the average cross-section. The contribution of the Brink-Axel mechanism in resolving the discrepancy is pointed out.Comment: 9 pages, 4 figure
    corecore